MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae.
نویسندگان
چکیده
The Saccharomyces cerevisiae protein MSS4 is essential and homologous to mammalian phosphatidylinositol-4-phosphate (PI(4)P) 5-kinases. Here, we demonstrate that MSS4 is a lipid kinase. MSS4 has dual substrate specificity in vitro, converting PI(4)P to PI(4, 5)P2 and to a lesser extent PI(3)P to PI(3,4)P2; no activity was detected with PI or PI(5)P as a substrate. Cells overexpressing MSS4 contain an elevated level specifically of PI(4,5)P2, whereas mss4 mutant cells have only approximately 10% of the normal amount of this phosphorylated phosphoinositide. Furthermore, cells lacking MSS4 are unable to form actin cables and to properly localize their actin cytoskeleton during polarized cell growth. Overexpression of RHO2, encoding a Rho-type GTPase involved in regulation of the actin cytoskeleton, restores growth and polarized distribution of actin in an mss4 mutant. These results suggest that MSS4 is the major PI(4)P 5-kinase in yeast and provide a link between phosphoinositide metabolism and organization of the actin cytoskeleton in vivo.
منابع مشابه
Calmodulin controls organization of the actin cytoskeleton via regulation of phosphatidylinositol (4,5)-bisphosphate synthesis in Saccharomyces cerevisiae.
Phosphoinositides regulate a wide range of cellular processes, including proliferation, survival, cytoskeleton remodelling and membrane trafficking, yet the mechanisms controlling the kinases, phosphatases and lipases that modulate phosphoinositide levels are poorly understood. In the present study, we describe a mechanism controlling MSS4, the sole phosphatidylinositol (4)-phosphate 5-kinase i...
متن کاملPhosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae.
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, th...
متن کاملPhosphatidylinositol (4,5)-bisphosphate Turnover by Inp51 Regulates the Cell Wall Integrity Pathway in Saccharomyces Cerevisiae
PPI regulate a wide range of cellular processes, including proliferation, survival, cytoskeleton remodelling and membrane trafficking, yet the mechanisms controlling the kinases, phosphatases and lipases that modulate phosphoinositide levels are poorly understood. In the present study, we describe a mechanism controlling MSS4, the sole phosphatidylinositol (4)-phosphate 5-kinase in Saccharomyce...
متن کاملPhosphatidylinositol 4-phosphate is required for translation initiation in Saccharomyces cerevisiae.
The small natural product wortmannin inhibits protein synthesis by modulating several phosphatidylinositol (PI) metabolic pathways. A primary target of wortmannin in yeast is the plasma membrane-associated PI 4-kinase (PI4K) Stt4p, which is required for actin cytoskeleton organization. Here we show that wortmannin treatment or inactivation of Stt4p, but not disorganization of the actin cytoskel...
متن کاملThe dual PH domain protein Opy1 functions as a sensor and modulator of PtdIns(4,5)P₂ synthesis.
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 25 شماره
صفحات -
تاریخ انتشار 1998